
Approximate Nearest Neighbour Search with
the Fukunaga and Narendra Algorithm and Its

Application to Chromosome Classification

Francisco Moreno-Seco, Luisa Micó, and Jose Oncina�

Dept. Lenguajes y Sistemas Informáticos
Universidad de Alicante, E-03071 Alicante, Spain,

{paco,mico,oncina}@dlsi.ua.es

Abstract. The nearest neighbour (NN) rule is widely used in pattern
recognition tasks due to its simplicity and its good behaviour. Many fast
NN search algorithms have been developed during last years. However,
in some classification tasks an exact NN search is too slow, and a way
to quicken the search is required. To face these tasks it is possible to use
approximate NN search, which usually increases error rates but highly
reduces search time.
In this work we propose using approximate NN search with an algo-
rithm suitable for general metric spaces, the Fukunaga and Narendra
algorithm, and its application to chromosome recognition. Also, to
compensate the increasing in error rates that approximate search
produces, we propose to use a recently proposed framework to clas-
sify using k neighbours that are not always the k nearest neighbours.
This framework improves NN classification rates without extra time cost.

Keywords: Approximate Nearest Neighbour, Pattern Recognition,
Chromosome Recognition.

1 Introduction

The nearest neighbour (NN) rule classifies an unknown sample into the class of
its nearest neighbour according to some similarity measure (a distance). Despite
its simplicity, classification accuracy is usually enough for many tasks. However,
some tasks may require finding the k nearest neighbours in order to improve
classification rates, thus the NN rule has been generalized to the k-NN rule [3].
Many classification tasks represent data as vectors and use one of the Minkowsky
metrics as the distance, usually the L2 (Euclidean distance). However, there are
other tasks where a vector representation is not suitable, and thus other distance
measures are used: string distance, tree distance, etc.

Although heavily used in pattern recognition, the NN rules have been also of
interest for other fields such as data mining and information retrieval, which usu-
ally involves searching in very large databases and facing with high dimensional
� The authors wish to thank the Spanish CICyT for partial support of this work

through project TIC2000–1703-CO3-02.

A. Sanfeliu and J. Ruiz-Shulcloper (Eds.): CIARP 2003, LNCS 2905, pp. 322–328, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Approximate Nearest Neighbour Search 323

data. Whenever the classification task requires large training sets or expensive
distance measures, the simple exhaustive search for the NN becomes unprac-
tical. To overcome some of these problems, a large number of fast NN search
algorithms [5,4,13,11,2,10] have been developed; most of them have been eas-
ily extended to find the k-NN. However, the requirement of finding exactly the
k-NN involves higher computing effort (dependent on the value of k).

For some tasks finding exactly the NN (even using a fast NN search algo-
rithm) may become too slow; some approximate NN search algorithms [1] have
been proposed to face these tasks, yielding slightly worse classification rates but
obtaining much lower classification times.

Recently [9], a framework for approximate k-NN classification based on
approximation-elimination fast NN search algorithms has been proposed. The
main idea in that work is to modify a NN search algorithm keeping a sorted array
with the prototypes whose distance to the sample has been computed during the
search (the selected prototypes), and classify the sample by voting among the
nearest k prototypes found while searching for the NN, including the NN itself.
Those prototypes are called the k nearest selected prototypes (k-NSN).

In this work we have applied the ideas from [1] to the Fukunaga and Narendra
algorithm, which has been implemented using a priority queue to allow approx-
imate search. Then, to improve classification rates we propose to use either the
k-NSN classification scheme or the k-NN scheme; while the first improves clas-
sification rates without increasing classification times, the latter obtains better
classification rates than k-NSN but at an extra time cost that depends on the
value of k.

2 The Fukunaga and Narendra Algorithm Implemented
Using a Priority Queue

The algorithm from Fukunaga and Narendra [5] is a classic NN search algorithm.
In the preprocessing phase, a tree is built from the training set, using some hi-
erarchical clustering algorithm. In [5] the k-means algorithm is suggested for
clustering the set at each level in the tree, and due to this suggestion the Fuku-
naga and Narendra algorithm is often considered suitable only for Euclidean
spaces. However, if a more general clustering algorithm is used instead, the
search algorithm is suitable for any metric space.

In the tree, each non-leaf node p contains a representative Mp of a set of
prototypes Sp, a radius Rp (the maximum of the distances between Mp and all
the other prototypes in Sp), and l children. Leaf nodes contain only a repre-
sentative Mp and the set of prototypes Sp. The search phase traverses the tree
using a branch and bound scheme. At each node, the distances from the repre-
sentatives of its children to the sample are computed and stored. Given a child
p, the pruning condition is:

dnn + Rp < d(x, Mp) (1)

324 F. Moreno-Seco, L. Micó, and J. Oncina

where x is the sample and dnn is the distance to the nearest neighbour found
so far. For all non-pruned nodes, the search continues, starting with the nearest
child. When the node p is a leaf, all the prototypes stored in the node are tested:
if they can not be the nearest neighbour, they are pruned; otherwise, its distance
to the sample is computed and the nearest neighbour is updated if necessary.
Given a leaf node p, the pruning condition for a prototype xi ∈ Sp is:

dnn + d(xi, Mp) < d(x, Mp) (2)

Please note that d(x, Mp) has been previously computed, and d(xi, Mp) is com-
puted and stored during the building of the tree, so this condition does not
involve new distance computations.

The original formulation of the Fukunaga and Narendra algorithm [5] is usu-
ally reformulated in a more intuitive recursive way, but in this work we have
implemented it using a priority queue that allows for approximate search: after
computing all the distances to the children, all non-pruned nodes are stored in a
priority queue (similar to the one used in [1]), using d(x, Mp)−Rp as the key for
the queue (see equation 1). Then, the closest element from the queue is extracted
and compared (again) with dnn; if the current node key is greater than dnn, the
search is finished as all the nodes in the queue are farther from the sample than
the current nearest neighbour (see figure 1 for details).

The Fukunaga and Narendra algorithm can be extended to find exactly the
k-NN with a couple of simple modifications: first, let dnn be the distance to
the kth NN instead of the distance to the NN. Second, each time a distance
is computed, store it in a sorted array of the k-NN distances (if possible). As
the value of dnn in the pruning condition changes, the time expended by the
algorithm to find exactly the k-NN increases in a quantity that depends on the
value of k.

3 Approximate Search and Classification

The condition labelled as (a) in the figure 1 is the condition to finish the search: if
the nearest (to the sample) element in the queue has a key m that is greater than
the current distance to the nearest neighbour dnn, then the nodes in the queue
(including the one who has just been extracted) can not contain the nearest
neighbour and the search may be finished.

Applying a technique similar to that in the work by S. Arya and D.M.
Mount [1], the condition (a) in figure 1 may be transformed into:

if (1 + ε)m > dnn or . . . (3)

This new condition (with ε > 0, obviously) allows to finish the search when
the current nearest neighbour is not too far from the nearest neighbour. Using
this new condition, the search will become faster, but the classification rate will
become slightly worse. As it may be expected, the faster the search, the worse
the classification rate will be, thus the choice of the value for ε should be a
trade-off between classification time and accuracy.

Approximate Nearest Neighbour Search 325

function pqsearch
input t (tree)

x (unknown sample)
output nn ∈ P (x’s nearest neighbour in P)

begin
insertPQ(t,0) //insert the root of the tree in the queue
endsearch := false ; B := ∞
while not endsearch do

(t, m) := extractMinPQ() //extract node t with minimum key m
(a) if m > dnn or emptyPQ() then

endsearch := true
else

for all p = Child(t) do
let Mp be the representative of p, and Rp the radius of p
dp := d(x, Mp)
if dp < dnn then // Updating nearest neighbour

dnn := dp ; nn := p
endif
if dp ≤ dnn + Rp then // non-pruned child

if Leaf(p) then
for all prototype xi ∈ Sp do

if dp ≤ d(xi, Mp) + dnn then
dxi := d(x, xi)
if dxi < dnn then // Updating nearest neighbour

dnn := dxi ; nn := xi

endif
endif

endfor
else

insertPQ(p,dp − Rp)
endif

endif
endfor

endif
endwhile

end pqsearch

Fig. 1. Fukunaga and Narendra algorithm using a priority queue

On the other hand, classification rates may be improved using more than just
the nearest neighbour found in the search. If we use the k-NN, the search will
become slower, so we need a way to improve classification without increasing
classification time. In [9] it is showed that storing the closest k prototypes whose
distance to the sample is computed during a (non-approximate) NN search (the
k nearest selected neighbours, the k-NSN), and classifying the sample by voting
among these prototypes improves significantly classification rates, yielding rates

326 F. Moreno-Seco, L. Micó, and J. Oncina

similar to those of a k-NN classifier with the classification time of a NN classifier
(finding exactly the k-NN requires an extra overhead).

In this work we present some preliminary results of the application to the
Fukunaga and Narendra algorithm of a combination of the two ideas above: ap-
proximate search using ε to improve speed, and approximate k-NN classification
(that is, k-NSN classification) in order to improve classification rates (approx-
imate NN search usually produces higher error rates). Two main changes have
been made to the Fukunaga and Narendra’s algorithm: the use of a priority
queue in the search to allow approximate NN search, and storing the k nearest
prototypes visited during the search (the so called k-NSN), in order to classify
the sample by voting among them.

4 Experiments

We have developed a set of experiments with a chromosome database [8,7,6] that
contains 4400 samples coded as strings. We have chosen to use the Levenshtein
distance [12] to measure the distance between two chromosomes in this task.
The database has been divided into two sets of 2200 samples each, and two
experiments have been performed using one of them for training and the other
one for test. The tree has been chosen to be a binary tree containing only one
prototype at each leaf, and the k-medians algorithm has been used to recursively
partition the training set to build the tree.

The experiments were repeated for several values of ε and, in order to test
the effect of using more than just one neighbour to classify, the k-NSN and k-NN
schemes were used for classification; the values of k ranged from 1 to 15. Figure 2
shows the evolution of both error rate and classification time of a 1-NN search
for increasing values of ε (1-NSN and 1-NN results are the same by definition).
The results for k = 15 are plotted in figure 3, which shows as a reference the
1-NN error rate and classification time.

As the figures 2 and 3 show, the choice of a value for ε depends on the amount
of allowable error increase, or on the amount of speed increase required. Also,
using more than just one neighbour to classify improves error rates, thus allowing
a higher value for ε. If classification time is critical for the task, then the best
choice seems to be the k-NSN, which requires no extra time over a k = 1 search
and improves NN classification rates. However, using k-NN produces lower error
rates but with a certain time overhead. For the classification task presented in
this work, the overhead is low due mainly to the low value of k; higher values of
k have been tested but did not yield better classification results.

5 Conclusions and Future Work

We have combined two techniques to speed up the classification time and to
improve classification rates, and we have tested that combination on a classic
and widely known fast NN search algorithm, the Fukunaga and Narendra algo-
rithm. The results show that the classification process using approximate search

Approximate Nearest Neighbour Search 327

5

6

7

8

9

10

11

 0 1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

er
ro

r
ra

te
 (

%
)

cl
as

si
fic

at
io

n
tim

e
(s

ec
s)

ε

Nearest neighbour

error rate
classif. time

Fig. 2. Error rates and classification times for several values of ε, for a 1-NN search.

5

6

7

8

9

10

11

 0 1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

er
ro

r
ra

te
 (

%
)

cl
as

si
fic

at
io

n
tim

e
(s

ec
s)

ε

K = 15 (k-NSN vs k-NN)

1-NN (ε=0) error
1-NN (ε=0) time

15-NSN error
15-NN error

15-NSN time
15-NN time

Fig. 3. Comparison of error rates and classification times for several values of ε, for
k = 15.

328 F. Moreno-Seco, L. Micó, and J. Oncina

(with ε > 0) is considerably faster, about four times faster for the chromosomes
database. Also, the classification rates obtained may be improved using either
k-NSN or k-NN classification schemes, which yield to rates always better than
those of a non-approximate NN classifier, even with high values for ε.

As for the future we plan to apply the same techniques to tree-based NN
search algorithms other than Fukunaga and Narendra’s. We will also study the
relation between the value of ε and the classification time and accuracy, using
also other databases, either synthetic or real.

Acknowledgments. The authors wish to thank Alfons Juan for providing us
with the chromosomes database.

References

1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algo-
rithm for approximate nearest neighbor searching. Journal of the ACM (1998) 45
891–923

2. Brin, S.: Near Neighbor Search in Large Metric Spaces. Proceedings of the 21st

VLDB Conference (1995) 574–584
3. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley (1973)
4. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches

in logarithmic expected time. ACM Transactions on Mathematical Software (1977)
3 209–226

5. Fukunaga, K., Narendra, M.: A branch and bound algorithm for computing k–
nearest neighbors. IEEE Trans. Computing (1975) 24 750–753

6. Granum, E., Thomason, M.G.: Automatically inferred Markov network models for
classification of chromosomal band pattern structures. Cytometry (1990) 11 26–39

7. Granum, E., Thomason, M.G., Gregor, J.: On the use of automatically inferred
Markov networks for chromosome analysis. In Automation of Cytogenetics, C.
Lundsteen and J. Piper, eds., Springer-Verlag (1989) 233–251

8. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized
trypsin G-banded human metaphase chromosomes. Clinical Genetics (1980) 18
355–370

9. Moreno-Seco, F., Micó, L., Oncina, J.: Extending fast nearest neighbour search
algorithms for approximate k-NN classification. Pattern Recognition and Image
Analysis. Lecture Notes in Computer Science, F.J. Perales et al (Eds.) vol. 2652,
Springer-Verlag (2003) 589–597

10. Nene, S., Nayar, S.: A Simple Algorithm for Nearest Neighbor Search in High Di-
mensions. IEEE Transactions on Pattern Analysis and Machine Intelligence (1997)
19(9) 989–1003

11. Vidal, E.: New formulation and improvements of the Nearest-Neighbour Approx-
imating and Eliminating Search Algorithm (AESA). Pattern Recognition Letters
(1994) 15 1–7

12. Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of
the Association for Computing Machinery (1974) 21(1) 168–173

13. Yianilos, P.N.: Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces. ACM-SIAM Symposium on Discrete Algorithms (1993)
311–321

	Introduction
	The Fukunaga and Narendra Algorithm Implemented Using a Priority Queue
	Approximate Search and Classification
	Experiments
	Conclusions and Future Work

